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Abstract+AppIying the principles of the molecular-kinetic theory, the basic relationships are studied 
which govern the processes of intensive evaporation and condensation. One-dimensional steady-state 
problems are considered. Through application of an approximate method, developed by the authors, a 
closed description of the processes of intensive evaporation and condensation is obtained. The calculation 
data are presented which characterize the basic regularities in the above processes. These are compared 
with the experimental data of Necmi and Rose [23] on intensive condensation of mercury. Based 
on the results obtained, simple interpolation formulae are suggested. The findings of the analysis check 
well with the known numerical solutions of the problems of intensive evaporation and condensation. In 
the region of low-intensity processes, the proposed formulae go over into the known linear theory 

relations. 

NOMENCLATURE 

= 5 -u, intrinsic velocity of molecules; 

vapour specific heat at constant pressure; 
distribution function ; 
local Maxwellian distribution function ; 
Boltzmann H-function flux along 

coordinate X; 
specific mass flux ; 
specific momentum flux ; 
specific energy flux ; 
Boltzmann constant ; 
specific heat ratio of vapour ; 
mean free path of vapour molecules ; 

u 

= (KRT)“’ ’ 
Mach number; 

mass of molecule ; 
number density of vapour molecules; 
number density at s = 0; 
equilibrium number density corresponding 

to temperature T,; 
number density far from the interphase 

surface ; 
pressure ; 
saturation vapour pressure corresponding 

to temperature TS; 
vapour pressure far from the interphase 
surface ; 
stress tensor, pij = Pi,- Phi,; 
vapour Prandtl number; 
specific heat flux ; 
vapour gas constant; 
specific heat of evaporation ; 
temperature ; 
interface temperature ; 
temperature far from the interphase 
surface ; 
macroscopic vapour flow velocity ; 

x,y,z, coordinates. 

Greek symbols 

8, coefficient of evaporation (condensation) ; 
4 thermal conductivity of vapour ; 

K vapour viscosity ; 

59 velocity of a molecule in a laboratory 
coordinate system .Y, y,~ ; 

<x,<y,<z, components of velocity 5 in the 
coordinate system \-,y,c ; 

P? = m . II, density ; 

PS? equilibrium density corresponding to 
temperature r, ; 

PIT vapour density far from interphase surface. 

1. INTRODUCTION 

THE PAPER is concerned with the study of laws 

governing intensive processes of evaporation and 
condensation. Briefly the problem under investi- 
gation consists in the following. An analysis is 
performed of a one-dimensional steady-state process 
of evaporation (condensation) of liquid or a solid 
body surrounded by its own vapour (Fig. I). The 
interphase surface temperature, 7”, and thus the 
equilibrium saturation pressure, P,,, which cor- 
responds to this temperature, are assumed to be 
known. It is required to determine mass, momentum 
and energy lluxes at some given vapour properties 
far from the interface (T,,P, ,. .). 

An essential point of the mechanism of evap- 
oration and condensation is a unique character of 
the non-equilibrium state of vapour near the in- 
terface. The surface layer of vapour is formed of two 
opposite flows of molecules with different distri- 
bution functions (spectra). The flow of molecules 
from the surface is determined by the surface 
emission of molecules. In accordance with the 
common approach [I], we shall assume that in the 
problems considered the diffusion scheme of evap- 
oration is realized, i.e., the distribution function of 
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molecules moving from the interface has the form 

II 

L = (zn~ ~)3/2 e 
-E”ZRT 

” (1.1) 

The density of molecules, n, in equation (1.1) is 
equal to, or less than, the saturated vapour density, 
II,, at the surface temperature 

ture and pressure jumps at the interface as functions 
of j and q 

T,- T(O) 
____ = 0.454j+2.686& 

T, 

II = /In,. (1.2) 

The coefficient /I < 1, called the evaporation (conden- 
sation) coefficient, is an averaged characteristic of 

the surface ‘conditions and of the physical nature of a 
condensed phase. The opposite flow of molecules is 
formed in the vapour layers farther removed from 
the wall and its spectrum is different. Near the 

Gasdynamic region 

P, %,n,) 

i 1 

(Condensation) 

II 

Evaporation) 

Liquid 
(or solid) 

\ Interface 

FIG. I. Typical statement of one-dimensional steady-state 
problems. 

interphase surface, a characteristic region is formed 
the length of which is several lengths of the free paths 
of molecules and which is referred to as the Knudsen 
layer. Within the boundaries of this region, the 
ordinary macroscopic characteristics and the result- 
ing gradient-type transfer equations (the Fourier law, 
Newton’s law of viscous friction) turn to be invalid. 
Thus, the whole vapour space may be divided into 
two regions (Fig. 1): a Knudsen layer and an outer 
region (the region of a gasdynamic flow).* A fairly 
detailed analysis of vapour behaviour in the Knud- 
sen layer from the viewpoint of the molecular-kinetic 
theory (solution of the Boltzmann kinetic equation 
or of its models) has been carried out for the region 
of low-intensity processes (M << 1). Using the mo- 
ment method, the authors of [3,4] received the 
following expressions for the extrapolated tempera- 

* For details, see [2] 

(1.3) 
PS--P(0) l-0.3998 
-----= 

PS B 
.2(7r)l’2.J+ 1.107q,, 

where I= j&J,) is the dimensionless mass flux, Gl 

= 2/5 .q,/(P,C,) the dimensionless heat flux by heat 
conduction, C, = (2R q)“‘. 

In a number of later works, [S-7], these relations 
were confirmed by applying some other methods for 
solution of kinetic equations. On the basis of the 
results obtained in [3,4] the conclusions were drawn 
about the vapour state near the interface. Thus, in 
accordance with [3], at /I = 1 the vapour becomes 

super-saturated during evaporation and superheated 
during condensation. 

With increase in the rate of evaporation or 

condensation (M _ I ), the departure of vapour from 
the equilibrium state in the Knudsen layer also 
increases. This appreciably complicates description 

of these processes. Throughout the years 1930-1960 
attempts were undertaken by a number of re- 
searchers [&lo] to develop a correlation for the 
evaporation intensity j by refining the well-known 
simple Herts-Knudsen formula (taking into account 
the vapour flow motion, etc.). A most comprehensive 

review of these efforts is given in [9]. It might be well 
to point at inconsistency of the calculation schemes 
suggested by the authors of [S-lo]. Usually, the 
description does not allow for the actual physical 
situation and vapour state near the surface. This has 
objectively called for going over to a rigorous 
formulation of the basic kinetic equations. The first 
accurate investigations in the finite-intensity region 

were undertaken by the authors of [l l] who, by the 
use of the integral method, obtained numerical 
solution of the BGK model kinetic equation. The 
analysis performed by these authors has revealed 
that with considerable increase in the rate of 

evaporation and condensation, the temperature and 
density jumps become commensurate with the 
magnitudes of temperature and density of the 
vapour. It has been specially noted that “steady ‘in 
vacua’ vaporization is impossible in the process of 
evaporation” and that the limiting mass flow rate of 
emitted molecules, calculated from formula (l.l), is 
not attainable, i.e., there is a maximum vapour flow 
rate which is less than P$(2xRT,)“‘. Unfortunately, 
reduced accuracy of calculations in the region of 
large mass fluxes has not allowed these authors to 
obtain the value of the maximum mass flux. 

The first, approximate, calculation of the maxi- 
mum flow rate in the course of evaporation 
appears to be carried out in [12] where, on the basis 
of the BGK model equation, an unsteady problem of 
vapour expansion on its vaporization into vacuum 
was solved numerically. It was shown that after a 
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time lapse of about 20 “free path time” intervals, 
stabilization of the return molecule flow is observed 
and the mass flux decreases from its initial value 
PJ(27tRT,)“’ by about 20”,/,. 

Thus, in the steady-state evaporation regime with 
a maximum mass flux, approximately 115 of the 
number of emitted molecules returns to the surface 
and condenses. According to the calculations perfor- 
med in this work, the temperature of the vapour far 
from the surface in the maximum evaporation regime 
(maximum mass flux) is T, = 0.69T,. The parameters 
obtained here for the regime of the maximum 
evaporation rate agree welt with the approximate 
estimates of this very author but reported earlier in 
[13,14]. 

In [14] it was also noted that in the regime of 
maximum evaporation rate the state of vapour is 
distinguished by considerable supersaturation. In a 
recently published work [15], the process of in- 
tensive evaporation was treated by the Monte-Carlo 
method with the use of the scheme suggested 
by Bird [16]. In the region of low and moderate 
intensities the results of [ 151 are in a good agreement 
with the data of [I I] and, for the limiting evap- 
oration regime, the process characteristics are con- 
sistent with the conclusions drawn in [13,14]. 

The region of intensive condensation has not been 
so thoroughly investigated as that of evaporation. 
Reference [ 1 I] appears to be the only one to obtain 
discreet calculations on some condensation regimes. 
It also contains the conclusion concerning asym- 
metry in the description of intensive evaporation and 
condensation which does not manifest itself in the 
region of validity of the linear theory. An example of 
intensive condensation is considered in [ 171. The 
analysis was carried out only for two Mach numbers 
of the incident Bow: M, = 0.855 and M, = 1.5. All 
information reported in the works quoted has been 
obtained either on the basis of the BGK mode1 
equation or by computer modelling of the very 
process of molecular collisions with the use of the 
Monte-Carlo method. Solution of the above prob- 
lems on the basis of the general Boltzmann 
equation has not been obtained as yet. 

In concluding this brief survey, we wish to 
emphasize again that the region of the processes of 
intensive evaporation and condensation has been 
little studied to date. Consequently, particularly 
urgent becomes investigation of approximate 
methods of solution of the probfems outlined. 

One of the possible approximate methods for the 
analysis of intensive evaporation and condensation is 
given in the present work. Section II of the paper 
deals with intensive evaporation,* while Section III, 
with intensive condensation. 

11. INTENSIVE EVAPORATION 

In conformity with the general statement of the 
problem under consideration, we assume for the 

*Statement of the intensive evaporation problem was 
given in a very brief form in 1181. 

solution of the problem of intensive evaporation that 
T, and n, are known as well as one of the parameters 
of vapour (P,, T,, n,) at a distance from the 
interface. As a rule, such an external parameter, pre- 
assigned for the system, is the pressure of the 
surrounding medium, P,. It is clear that knowledge 
of this quantity is sufficient for obtaining the 
solution. Since the whole space occupied by vapour 
may be subdivided into two regions (see above), we, 
first, shall study the behaviour of vapour in the 
gasdynamic region on the basis of continuum 
mechanics considerations and then investigate the 
processes occuring in the Knudsen layer on the basis 
of the kinetic theory. The analysis of this and of all 
the subsequent problems considered here will be 
made in the rectangular coordinate system in which 
the plane y,z coincides with the interface (Fig. 1). 

(A) Gasdyna~ic~o~ region 
For the considered problem the continuity equa- 

tions of motion and energy of the vapour flow have 
the form 

Pu=PmUnr (2.1) 

P+pU2-4/3P; = (P+pu2),, (2.2) 
Y 

= p&_(cpT+g)~. (2.3) 

The subscript cc refers to the equilibrium Euler 
region of the vapour flow which is eventually 
attained by vapour. The LHS of expressions 
(2.1)-(2.3) are written for an arbitrary point in the 
gasdynamic region. For Pr = 3/4, which is valid for 
the majority of gases and vapours, equation (2.3) 
yields 

dh 
jl;-j.,.dy = jli,, 

where j = pu, h = C,T+ (u2/2). Denoting 

z = $ij[ 

and taking into consideration that for evaporation j 
> 0, equation (2.4) may be reduced to 

The only solution of the above equation satisfying 
the condition dl;/dZJ,,, --* 0 (transition to the Euler 
equilibrium region) is 

I; = fi,. (2.6) 
The equation of motion (2.2), after some manipu- 
lations, is reduced to 

Kfl 
+ ,(I”-l’)Fg=O, (2.7) 
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where 

(the sign “-” is used for evaporation and the sign 
“ +“, for condensation). 

According to (2.6) /I//I, = 1. This allows a 

conclusion that 

V=l (2.8) 

is the solution of equation (2.7) satisfying the 

conditions 

(df’/dZ),+, + 0, VI,+, = 1. 

(B) Knudsen luyer 
The Knudsen layer is made up of the two opposite 

flows of molecules with different distribution func- 

tions (see Section I). The flow of molecules from the 
surface is governed by the surface emission of 
molecules and is described by the Maxwellian 
distribution function (I. 1). The incident flow of 

molecules is formed in the hydrodynamic region and 
it “remembers” the state and motion of vapour in 
this region. The Euler equilibrium flow is described 
by the following distribution function 

cc >cr,>> --co 
CC > 5, > -cc (2.9) 
CC >&> -Co. 

Obviously, the form of this function at intermediate 
points will be more complex. An accurate solution of 
the problem consists in finding such a distribution 
function which would satisfy the Boltzmann kinetic 
equation at every point in the Knudsen layer and the 
following boundary conditions 

x=0, f=j; forL>O, 

x -+ m, f =.f, for all 4,. 

In order to obtain a solution of the Boltzmann 

equation by the approximate moment method, one 

needs an approximation on the distribution function. 
We have considered some possible structures of the 
distribution function approximations suitable for 
description of the process at every point of the 
Knudsen layer. This study allowed us to establish an 
interesting feature peculiar to a particular kind of 
discontinuous four-moment approximations.* It is 
this: in order to determine the vapour parameters in 
the region of the gasdynamic flow, it is sufficient that 
only the system of conservation equations be solved. 
And really, with a four-moment approximation of 
the distribution function available, it is possible to 
write the expressions for the mass, momentum and 

energy fluxes in the zones s = 0 and x + x; and 
then, by setting these expressions equal, to obtain 
three conservation equations which comprise seven un- 
known quantities: three at .x--t CC [the Maxwellian 
distribution function (2.9)] and four at x = 0 (by 
virtue of the four-moment approximation). The 
diffusion nature of evaporation (see above) implies 
three boundary conditions for the moments which 

describe the state of molecules in the region 0 < 5, 
< co. Thus, there are six equations (3 conservation 
equations and 3 boundary conditions at s = 0) for 
determining seven unknown values. In accordance 
with the statement of the problem, one parameter for 
x -+ co is to be pre-assigned. This closes the system 
and all the unknown values are unambiguously 

determined. 
When defining the structue of the required four- 

moment approximation one must bear in mind the 
following: 

(I) in accordance with (2.6) and (2.8) at the outer 
boundary of the Knudsen layer the Euler flow is 
realized which is described by the distribution 
function (2.9); 

(2) with small deviation of the vapour properties 
from equilibrium the results of calculation with the 
use of the four-moment approximation must go over 
into corresponding expressions of the linear theory. 

The analysis of different four-moment approxi- 
mations made it possible to identify the following 
function as best complying with the above 
requirements 

where n,(x), n,(x), T,(x), ul(x) are four moments varying along the coordinate X. With Y -+ x, 
approximation (2.10) transforms into the Maxwellian function (2.9). With x = 0, because of the diffusion 
nature of evaporation, approximation (2.10) takes on the form 

5, < 0 

.f = 
<, > 0, 

(2.11) 

*The velocity distribution functions considered are assumed to consist of two parts: f, (for t, > 0) and .fi (for 5, < 0). ,fi 
containing three moments changing along x and fi. one moment changing along x. 
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where Cn, = n,(O), C is a dimensionless constant. To determine the vapour parameters in the gasdynamic 

flow region (n,, ‘I,, urn), we shall set up the mass, momentum and energy conservation equations for two 

sections: S-S and that which is located in the Euler flow region, using respectively functions (2.11) and (2.9). 
First, let us introduce the dimensionless quantities 

(2.12) 

(hereafter the primes will be omitted). 
With this notation, the dimensionless evaporation surface temperature T, = 1 and the corresponding 

equilibrium number density along the saturation line n, = 1, while the conservation equations take on the 

form 

where 

4 = exp( -&j, 
02 

Ic/ = l-erf[2($)1,z], erfa=$JIe-X2d.x. 

Solution of the above system of equations requires 
pre-assignment of one of the quantities nco, T,, urn, 
C. Specification of T, seems to be most convenient 
because in this case equations (2.13) will successively 

yield u,, nm, C. 

In this fashion the system of equations (2.13) has 
been calculated for T, varying from 0.998 to 0.660 
with a step 0.002. From the known values of n,, T,, 

u, and C the mass, momentum and energy fluxes as 
well as the Mach number, M, in the region of the 
Euler flow were determined. The calculation results 
are presented in Table 1 and in Fig. 2. 

1.0 

0.75 

0.25 

0 

FIG. 2. Results of calculation of gasdynamic parameters of 
intensive evaporation. 

(2.13) 

For comparison the Table also contains the results 

of solution based on approximation of the distri- 
bution function given in [19]. 

J 
(2.14) 

Figure 3 presents a graphical comparison of these 

results with the results of numerical solution given in 

[ll] (the latter are limited by j’ < 0.7 at which 
accuracy of calculations seems to be sufficient). One 
may note a good agreement of the results obtained 
by different methods. In the linear approximation, 
the approach under consideration gives the following 
expressions for dimensional quantities P,, P,, T,, T,, 
j with p = 1 

(2.15) 
T-T 
2 = 0.445;, 

T, 

1 p,-p, 1 
i^=1-0.4 P, 2(7c)“2 ’ 

(2.16) 

where 

j = j/p,C,, C, = (2RT,)‘12. 

Expressions (2.15)-(2.16) virtually coincide with 
the results obtained in the linear theory [3] on the 
basis of the eight-moment approximation [see ex- 
pressions (1.3) with q = 01. Similar calculations on 
the basis of distribution function (2.14) lead to less 
accurate agreement with the linear theory. However, 
it should be pointed out that application of this 
function enables one, on the basis of the moment 
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Table I. Results of calculations of gasdynamic parameters for evaporation 

T; ‘1, M, 

i’ I II I II I II 

0.05 0.994 0.992 0.977 0.976 0.015 0.016 
0.10 0.986 0.983 0.948 0.948 0.035 0.033 
0.15 0.980 0.975 0.927 0.925 0.050 0.050 
0.20 0.972 0.966 0.899 0.898 0.070 0.070 
0.25 0.964 0.956 0.873 0.871 0.091 0.090 
0.30 0.956 0.947 0.847 0.845 0.111 0.112 
0.35 0.946 0.935 0.816 0.815 0.137 0.137 
0.40 0.936 0.924 0.786 0.785 0.164 0.163 
0.45 0.926 0.913 0.758 0.757 0.186 0.191 
0.50 0.914 0.900 0.725 0.724 0.222 0.224 
0.55 0.899 0.885 0.686 0.690 0.263 0.261 
0.60 0.884 0.868 0.650 0.652 0.305 0.304 
0.65 0.869 0.853 0.615 0.612 0.347 0.352 
0.70 0.844 0.826 0.562 0.568 0.420 0.416 
0.75 0.814 0.796 0.506 0.512 0.510 0.505 
0.80 0.765 0.751 0.426 0.449 0.664 0.638 
0.82 0.703 0.721 0.345 0.411 0.883 0.724 
0.84 0.652 0.341 0.942 

Note: I, calculation with the use of the present authors’ approximation ; II, results obtained with 
the use of Crout’s approximation [19]. 

1.0 

0.25 

I -- Approxlmotlon (2.10) 

3 .- Data from [II] 

FIG. 3. Comparison of different approaches to solution of 
intensive evaporation problem. 1. Results of the present 
work. 2. Calculation with the use of Crout’s approximation 

[19]. 3. Data of [ll]. 

method solution of the Boltzmann equation, to 
obtain not only the values of the vapour gasdynamic 
parameters in the continuous flow region, but also 
their behaviour in the Knudsen layer. An example of 
such calculation of the number density n, carried out 
for the Maxwellian model of interaction of mol- 
ecules, is presented in Fig. 4. Two alternative 
moment systems have been used for this solution and 
therefore two curves are presented for each value ofj’ 
in this figure. 

Additional information on the validity of the 

n 

FIG. 4. Variation of vapour density along the coordinate X. 

above approximate method of description may 
be obtained through resorting to the familiar 
Boltzmann H-theorem. For steady-state one- 
dimensional problems investigated in the present 
paper, this theorem is formulated as follows 

(2.17) 

where fi, is the specific flux of the H-function along 
the coordinate x. Equation (2.17) shows that Ati, 
= A,,,-k,, > 0, where I?,,, fi,, are the values of 
the specific flux of the H-function for x = 0 and x 

+ a, respectively. On the basis of the known 
distribution functions for x = 0 and x -+ co the 
values of Ah, have been found. 
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Introducing the dimensionless specific flux of the 

H-function 

px = El, * 
n,(kTJ27rm)“’ 

we obtain for approximation (2.10) 

Afi, = $,n, --u,n, ln(n,Ti3’*) 

-2 l-Cn,Ti’*exp 
L ( >I 

-~ 
47tT, 

-Xn,u,(l -er f I;r.::)i 11 
+ (u,Fc -l)ln(Cn,T;3’2). (2.18) 

By analogy, for Crout’s approximation (2.14): 

Ati.,.., = un[ln(nT-“2T;1)-ln(n,T~3’2)]. 
(2.19) 

0.1 

0.08 

.x- 0.06 

a 

0.04 

0.02 - 

L 

I I I 

i 
I I 
I 
! 

0 0.5 , 1.0 1.5 

--- On the barlr of approxlmatlon (2.10) 

-On the bask of l?D. Grout’s opproxlmatbn [IS] 

FIG. 5. Application of the Boltzmann H-theorem to 
estimate the validity of different approximations. 1. Grout’s 
approximation [19]. 2. Present authors’ approximation 

(2.10). 

In Fig. 5, the increment of the H-function flux, 
Afi,, is plotted vs the Mach number M,. Variation 
of Afi, corresponds to the physical concepts about 
the increase in the extent of the departure of vapour 
from the equilibrium state near the interface with 
increasing M number of the vapour flow. The 
maximum on the curves probably corresponds to the 
regime of the limiting intensity of evaporation which 
restricts the region of virtually occurring flows. This 
regime, as is seen from Fig. 5, corresponds to the 
number M, = 1, which yields j’ 2: 0.82 (about 18% 
of the evaporated molecules are again trapped by the 

*Hereafter, the primes on the dimensionless quantities 
will be omitted. 

surface). This value as well as T, N 0.7OT, in the 
limiting evaporation regime is found to be in good 

agreement with the results of the numerical solution 

given in [ 121. 

On the basis of the results obtained (Table l), 
using the Clapeyron-Clausius equation 

dP r 
-= 
dT T(u”-u’) 

(2.20) 

and the Trouton approximate rule 

r/RT N 10, (2.21) 

where r is the specific heat of evaporation, u” and u’ 
are specific volumes of vapour and liquid (solid), 
respectively, at temperature T, we may show that the 
vapour formed as a result of evaporation turns out 
to be supersaturated. Really, assuming that u” >> u’ 
and u = RT/P, we shall obtain the following solution 
of (2.20) 

P = Ce-rlRT, (2.22) 

where C is the constant of integration. 
Hence, 

Ps(Tm) = Ce-“RTm, (2.23) 

where Ps(Tm) is the saturation vapour pressure 
corresponding to temperature T,. 

From (2.22) and (2.23) it is obvious that 

(2.24) 

Accounting for equation (2.21) and definitions of 
TA and nb, from (2.12), we may rewrite relation 
(2.24) as 

P a ps(Tm) = Tkn’m 
elo $-I 

c ) . (2.25) 

As mentioned above, in the problem of evap- 
oration the knowledge of one parameter of vapour 
flow in the gasdynamic region (TL in particular) is 

sufficient for all remainder characteristics of the flow 
to be determined, j including. Thus, noting (2.25), 
a definite degree of vapour supersaturation 

[PJPJT,)] will correspond to each value of j. 
Figure 6 gives a plot of this value vs the mass flux 
density j. One can see that even before the limiting 
evaporation regime is reached, vapour departing 
from the boundary appears to be so supersaturated 
that actually there should occur spontaneous volume 
condensation (condensation shock) near the evap- 
oration boundary. This conclusion agrees well with 
the qualitative estimates given in [14]. Thus, the 
implications of the linear theory are also confirmed 
in the region of intensive evaporation, but quanti- 
tatively all the effects being more pronounced. 

For practical applications, we have developed, on 
the basis of the above results, the interpolation 
formulae for an evaporation process of arbitrary rate 

K--T, (,)l’* u, 

T, 4 c,’ 
(2.26) 
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FIG. 6. The degree of supersaturation of vapour as a 
function of the intensity of mass flow. 

T-T 1’ _ 0,265 PCp, .’ 

T, hP, )I@ ’ 
(2.27) 

(2.28) 

[C, = (2R T,)‘12, p = WI. II is the vapour density]. 

The relations are written for fl = 1. For arbitrary 

values of /I, recalculation is made by the method 
suggested in [l 11 through substitution of p. for ps in 
relations (2.27) and (2.28) 

PS. (2.29) 

Relations (2.26)-(2.28) may be utilized in engineering 

applications. They are restricted to the limiting 
evaporation regime* which occurs at 

PSC, 
j,,,, N (0.80 + 0.85)~ 

2(n)‘!2 
(2.30) 

for /I = 1. For /I < 1, recalculation of (2.30) with the 
use of (2.29) is valid. 

111. INTENSWE CONDENSATION 

Analysis of intensive condensation will be perfor- 
med following the technique applied in the previous 
section for treating evaporation. As before, we 
consider a steady-state one-dimensional problem of 
vapour flow towards the interface at which transition 
to a solid or liquid state takes place. 

In accordance with the method adopted we shall 
first obtain the solution for the gasdynamic region of 
vapour flow and then analyze the processes in the 
Knudsen layer. 

*More complete information on the magnitude of ‘the 
limiting mass flux is to be found in works [20,21] devoted 
to recondensation in a plane layer. The limiting regime in 
this system will exist at KII + 0 if one of the surfaces has T 
--t 0. For KU n 0.1, [20] givesJ 10.82 and [21], j z 0.85. 

(A) GasdynamicJow region 
The energy equation is now reduced to 

(3.1) 

since j < 0 (condensation). 

The solution of this equation satisfying the 
condition (dh/dZ&,, + 0 is 

I; -I;, = (I;, --Ii, )e-“, (3.2) 

where ho is the value of the function fi at Z = 0. 

Further, express h/1;, from (3.2) and substitute the 
result into the equation of motion (2.7). The resulting 
equation is 

+KK+1(V’-V)f$O, (3.3) 

where AI; = I;, -ho. 
Having assumed that at a great distance from the 

interface the vapour flow is of the Euler type, we 
shall go over to the following condition that solution 
of equation (3.3) must satisfy 

dV 

dZ z-z 
-0, VI,,, = 1. (3.4) 

Solution of (3.3)-(3.4) will be sought in the series 
form 

V= I + i a,e-““, (3.5) 
fl=, 

where u, are unknown series coefficients. 

Substituting (3.5) into (3.3) and equating the 
coefficients of the same powers, e-“, we shall obtain 
expressions for a,. u2. a, 

Afi H x LI* = - 4 
l+H, I;,’ “= - 3K-1 ’ 

H”+K_I 

2K-1 

(13 = -2u,a, 
K-I 

5K-1 
(3.6) 

-----+HH, 
K-l 

Relations (3.6) allow us to derive a recurrent 
formula for a general term of the series 

(n-l)K-1 

K-l n--l 
c a,u,_i. (3.7) 

U”=(2n-1)K-l +H i=, 

K-l z 

Series (3.5), in which the general term is expressed in 
accordance with (3.7), converges and, hence, ex- 
pression (3.5) is a solution of (3.3). The proof of the 
convergence is based on comparison between the 
sum of the (II + 1) terms of the series, 

with the value of (u, +a, t.. uJ2 and is considered 
in detail in [22]. The calculations involve, of course, 
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FIG. 7. Statement of the intensive condensation problem. 

not an infinite series (3.5), but rather several of its 

partial sums. But in this case one has to know the 

magnitude of the resulting error. Let i: be the sum of 
the terms in (3.5) from the second one to II, i.e.. 

i: = uz+a,+...+a,. 

It is shown in [72] that when II + x 

(3.8) 

0 < i: < 1 --LI1 -(I -Al,)‘,‘. (3.9) 

This expression enables us to evaluate the maximum 

error appearing when series (3.5) is replaced by the 
sum 1 +a, emz. For example, for Z = 0 and (I~ = 0.2 
it follows from (3.9) that this error is -3”,,, with ll1 
= 0.15 it is IS”,,, etc. Replacing (3.5) by the sums 1 

frr, e -“+t~,e~~~, 1 +tr, e~“+a2e~2’+(~3e-“‘, 1 

+(I, e -‘+a, em2’ fo, e-““+u,e-“’ allows similar 

estimations to be made. 
Thus solution of the energy and motion equations 

clearly shows that in condensation the Knudsen 
layer borders on the region where viscosity and 
thermal conductivity show up. At .Y --t 3c, this region 
(let us call it the Navier-Stokes region) transforms 
into the Euler flow. 

Let us consider specific features of the flow in the Knudsen layer which are characteristic for the problem 
under study (Fig. 7). The matching of this layer with the Navier-Stokes region takes place at section K-K,* 
therefore it would be natural to represent the distribution function, &, at K-K in the form of an ordinary 
thirteen-moment approximation. This, for the one-dimensional case considered, has the form 

(3.10) 

where 

V 
P, = tjKkT,, v = 

(2RT,)“Z ’ 
v = c-u,, Jq = P,,-csijP 

When passing the Knudsen layer and colliding with the molecules that move from the condensation surface 
the function fK varies. Applying the same arguments as those used in the analysis of evaporation, we shall 

assume that at the condensation surface the distribution function of incident molecules is similar to function 
(3.10) for <, < 0. Then, with regard for the diffusion nature of evaporation of molecules from the surface, the 
distribution function in the immediate vicinity of S-S (Section I-1, Fig. 7) may be written as follows 

/ 111 \ 3,‘2 C’,,, 

(3.1 I) 

The coefficient of proportionality C is to be determined during solution. To determine the vapour parameters 
at the K-K section, let us formulate the laws of mass, momentum and energy conservation for region I using 
(3.10) and (3.11). For this purpose, we shall write down the expressions for the mass, momentum and energy 
fluxes at Sections I-I (jr, j,,, j,,) and K-K (j,, jpK, j,,). To simplify manipulations, we introduce the following 

dimensionless quantities? in addition to expressions (2.12) 

*The boundary K-K is an arbitrary one since matching occurs in a thin layer the thickness of which is of the order of 
the mean free path length. 

THereafter. the primes on the dimensionless quantities will be omitted 
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Then setting j,, jp,, j,, equal respectively toj,, jpri, j,, we shall obtain the system 

where 

Having formulated in a similar manner the conservation laws for region II, we obtain 

(3.14) 

Information on the gasdynamic flow is provided by (3.5). We shall consider this solution in the form 

V= l+a,e-“. (3.15) 

With Z = 0, i.e., at section K-K (3.15) yields 

% - = 1 +a,. (3.16) 
a, 

- - 
Taking into consideration (3.6) and expressions for Ah, h,, H [see equations (2.4) (2.7), (3.3) above] equation 
(3.16) may be reduced to 

2 

uk. 
$+/T,-&)-tG 

-.-El_ 
K 

(3.17) 
u, ---T=+$ 

K-l 

The error resulting from replacement of (3.5) at Z = 0 by a simplified formula (3.16) may be estimated from 
(3.9). To increase the accuracy of the solution, it is necessary to expand the system and replace (3.16) by 

n, 
-= 1+u,+a,, s= 1+a,+a,+a,,..., (3.18) 
u, % 

where a,, u2,. . , a, are determined from (3.6). Then the number of equations increases from seven to eight, 
nine, . . . 

Solution of the conservation problem requires pre-assignment of two parameters. It follows from such 
reasons: in point of fact it is known [see Section II(A)] that solution of the evaporation problem requires the 
knowledge of one parameter on the outer boundary of the Knudsen layer. During condensation the viscosity 
and thermal conductivity become apparent but the existence of an additional correlation (3.5), (3.6) reduces 
the number of additionally pre-assigned parameters to one. Therefore, in the studied systems of the type 
(3.13), (3.14), (3.17) the number of unknown quantities exceeds the number of equations by 2, hence, the 
closure of these systems is achieved through two pre-assigned parameters. For the convenience of solution, 
we specified uI( and TK. Then the system reduces to a 6th-order equation, the solution of which yields all 
unknown quantities. Some of the results obtained in this way are given in Table 2. In the case of slow 
condensation, function (3.10) may be linearized to give 

c 

4 . , r2 3 
fi = .r; 1 -tt7+2i5,+2(5 --I)+ --41~:(~~‘2-1) 1 

(ny I 
(3.19) 

and (3,ll) reduces to 

.f = .i[ I +,i,i2i~:+?(5’2-~)+- 1 L < 0, (3.20) 
_ 
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Table 2. Some results of calculations of gasdynamic parameters for condensation 

999 

Regime No. 
parameter I 2 3 4 5 6 7 8 9 10 

-UK 

P,llPK 
41/p, 

-.i 

1.711 I 5.1365 3.2219 6.1327 I .3495 1.9127 I .4065 2.9223 5.4919 1.0597 
1.9162 2.5319 I .8546 1.6303 1.8535 1.7117 1.3145 1.1548 2.2082 1.0331 
2.3873 4.6024 3.4625 3.8340 1.8488 2.2915 1.095 1 1.9244 4.3959 0.1519 
0.5331 0.8939 0.7858 0.9280 0.4197 0.53974 0.2952 0.5535 0.9143 0.0462 
5.2413 8.0142 5.5896 5.2448 4.9046 4.7210 3.3806 3.1809 7.0573 2.5838 

11.5500 4.7521 5.8557 4.4815 18.0230 11.2930 35.4050 10.7890 4.5870 1406.0 
2.0414 4.2982 3.7255 5.8781 I .6663 2.1914 1.5403 2.8118 4.8284 1.0733 
I .6000 3.0000 1.6000 I .7000 I .5000 I .5000 1.2000 1.2000 2.5000 1.0200 
2.0000 5.5000 3.0000 4.0000 I .5000 2.0000 1 .oOOo 2.0000 5.0000 0.1500 
0.0801 -0.2535 0.1423 -0.0617 0.058 I 0.0637 0.0129 -0.0199 -0.1877 0.00005 

-0.2488 0.5188 -0.3031 0.1018 - 0.2224 -0.1861 -0.0597 0.0469 0.3561 -0.0012 
4.0829 23.6400 11.1770 23.5130 2.4949 4.3828 1.5403 5.6236 24.1420 0.1610 
4.8282 30.3321 12.1490 24.3530 3.2358 4.8923 2.1173 5.0979 29.0260 1.0987 
5.3532 41.3152 15.6220 30.8370 3.0599 5.1743 1.3218 4.4733 42.6040 0.1040 
0.9924 I .0044 0.9930 0.9989 0.9917 0.9920 0.9891 0.9923 1.0026 0.9954 

-0.1622 0.1950 -0.1336 0.0433 -0.1886 -0.1272 -0.0868 0.0393 0.1374 -0.0127 

where 

41 nK-ns TK- T, c=- f=- r 
” = 4P, (RTK/2n)“* ’ n, ’ T, ’ 

r = (2RT,)‘,2, B = h++, 

no-n, 
PK=l+fi, tio=n, n,=Cn,, i= 

s (2R;)“’ ’ 

In the linear approximation u;( cc 1, ub, << 1, fi << 1, Z 
<< 1, therefore p li = 0, which makes it possible to density of mass flux at arbitrary intensity 

obtain the following relationships from the con- 
servation equations for the Knudsen layer 

P,-P, 
j = 1’67 (27tRT,)‘/Z 

; = - & (@+ 1.03~,)/2(~)“*, (3.21) 

Z = -0.444;-2.69&, (3.22) 

where? = j/p,C,, G1 = *.q,/P,C,. 
Expressions (3.21) and (3.22) virtually coincide 

with the corresponding formulae obtained in [3] (at 
/l = 1) [see expressions (1.3) above]. This indicates 
that the method considered adequately describes the 
linear processes either. 

A characteristic feature of all the solutions derived 
for the condensation process is a good accuracy of 
the relationship 

n,T, z n,T,, 

and since nT = P, it means that PK N P,. This 
allows us to conclude that the pressure in the process 
under investigation remains approximately constant. 
This conclusion, as is known, was arrived at in 
[ll], when Kogan and Makashev analyzed the 
problem by a numerical technique. Then density 
and temperature along the axis x may change in two 
ways: when approaching the interface either the 
density increases and temperature falls, or the 
density decreases and temperature increases, with nT 
being naturally constant in either case. 

On the basis of the calculation results and with the 
use of the description asymptotics in the low- and 
high-intensity regions we have derived an in- 
terpolation formula (with an error of < 5%) for the 

x {l +0.5151n[$~~~1’211. (3.23) 
c L=s \I,/ J) 

Equation (3.23) describes the case when b = 1. With 
B # 1, a recalculation is made according to the 
method of [ll], viz., pS = P,/RT, in expression (3.23) 
is substituted for p. from (2.29). It should be noted 
that with the signs chosen the mass flux in 
condensation j < 0. The recalculations show that 
even with a slight decrease in B from p = 1, the rate 
of condensation falls sharply which is attributed to 
the “shielding” effect of the flow of reflected 
molecules on the surface. 

On the basis of relationship (3.23) we have 

undertaken an analysis of the experimental data of 
[23] on film condensation of mercury vapours over a 
flat vertical plate up to M, = 0.36. (This seems to be 
the only one detailed investigation of the process of 
intensive condensation. Voluminous information on 
condensation of liquid metal vapours summarized in 
[24] refers to the conditions of validity of the linear 
theory of condensation.) The authors of [23] 
attempted, with the use of the linear theory re- 
lationships, to determine the condensation coefficient 
p on the basis of their experimental results and 
obtained a “paradoxical” dependence of p on the 
process intensity (mass flux). Figure 8 presents the 
results of treatment of the same experimental data 
with the use of relationships (3.23) and (2.29). One 
can easily see that account of the specificity of 
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FIG. 8. Comparison of predicted results with the experi- 
mental data of Necmi and Rose [23]. 

intensive condensation corrects the result, i.e. the 

condensation coefficient becomes independent of the 

mass flux and somewhat decreases with increase in 

the surface temperature. The latter tendency seems to 
be quite reasonable. The above results served as an 
indirect check of the results of the present 
investigation. 

The method considered permits the description of 
sufficiently intensive condensation processes when 
the linear theory is no longer valid. However, the 
proposed method is restricted by the numbers jM,I 
< I, i.e. by the region of subsonic condensation. This 
restriction is associated not only with formal 
reasons: at I&I 9 1, the region in which viscosity and 
thermal conductivity display themselves in the 

description of the outer region, turns out to be 
localized at a distance of several molecular free paths 

from the boundary of the Knudsen layer and 
division of the flow into regions I and II ceases to be 
valid. Of greater importance is the fact that the 
statement of the problems of one-dimensional con- 
densation in a supersonic region has not as yet been 
physically clarified. Therefore, the results have been 
obtained for the flows characterized by the numbers 
M, 5 1. 

IV. BRIEF SUMMARY OF INVESTIGATION 

The method suggested here for solution of prob- 
lems of intensive evaporation and condensation has 
provided a closed description of these processes as a 
result of solution of the mass, momentum and energy 
conservation equations for the Knudsen layer and 
the gasdynamic vapour tlow. This method, based on 
a choice of approximation for the distribution 
function in the Knudsen layer, is an approximate 

one. When dealing with specific engineering prob- 
lems, where of interest is the relationship between 

the vapour parameters at a distance from the 
interface (in the gasdynamic flow region) and the 
thermodynamic characteristics of the interphase 
surface, the proposed approach provides a compre- 
hensive information. 

The results obtained for the intensive evaporation 
process are in good agreement with all available 
numerical solutions of this problem. The Boltzmann 
H-theorem, applied for the first time to the analysis 
of intensive processes, enabled us to determine the 
degree of reliability of various approximations of the 

distribution function and the value of the limiting 
mass flux in evaporation. Numerical calculations 
proved the vapour formed in evaporation to be 
supersaturated. The numerical value of the degree of 
supersaturation as a function of the process intensity 
has been obtained. 

Using the present method the calculations of the 
intensive condensation have been made in a wide 
range of variation of the initial parameters (pressure 
and temperature of vapour at a distance from the 
interface). Comparison of these results with the data 
of Necmi and Rose [23] on intensive mercury 
condensation showed rather a good agreement. 

On the basis of results of this investigation simple 
interpolation formulae are suggested for engineering 

calculations. 
Solution of the basic equations of the continuum 

mechanics [Sections II(A) and III(A)] shows that 
the gasdynamic flow in evaporation differs from 
vapour behaviour in region II (Fig. 1) in conden- 
sation. In the first of these processes the flow is 

being realized at constant full enthalpy h while in the 
second process h varies over the coordinate Y. 
Consequently, there is a physical asymmetry of these 
processes which is imperceptible at low velocities but 
is apparent at large rates. A similar statement seems 
to be first made in [Xl. In addition, as it has already 
been mentioned, the problem of evaporation requires 
specification of one parameter for its solution while 
that of condensation requires two parameters for the 

purpose. 
Except the above mentioned work of Necmi and 

Rose [23] the authors failed to find other reliable 
experimental data on intensive evaporation and 
condensation. Further experimental studies will 
make it possible to estimate the accuracy of the 
method suggested. 
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ANALYSE DE L’EVAPORATION ET DE LA CONDENSATION INTENSIVES 

R&sum&&A partir des principes de la thiorie de la cinCtique moltculaire, on etudie les relations 
fondamentales qui gouvernent les mbanismes de I’tvaporation et de la condensation intensives. Par une 
mbthode approchte divelopte par les auteurs, on obtient une description complete des mttcanismes dans 
le cas des probltmes permanents et monodimensionnels. On prtsente les rtsultats des calculs, lesquels 
caractkrisent les rkgularitCs fondamentales de ces mtianismes. 11s sont cornpar& aux rCsultats 
exptrimentaux de Neomi et Rose [23] sur la condensation du mercure. A partir des rBsultats obtenus, on 
propose une formule simple d’interpolation. L’analyse prtsentke s’accorde bien avec les solutions 
numeriques connues. Dans la region des m&canismes $ faible intensitt, les formules proposies s’accordent 

avec les relations connues de la thkorie linkaire. 

UNTERSUCHUNG INTENSIVER VERDAMPFUNG UND KONDENSATION 

Zusammenfasung-Unter Anwendung der Prinzipien der molekular-kinetischen Theorie werden die 
grundlegenden Zusammenhlnge untersucht, die die Vorgange intensiver Verdampfung und Konden- 
sation bestimmen. Dabei werden stationare eindimensionale Piobleme berticksichtigt. Durch Anwendung 
einer Niiherungsmethode, die von den Autoren entwickelt wurde, erhalt man eine geschlossene 
Beschreibung der Vorgange intensiver Verdampfung und Kondensation. Rechenergebnisse werden 
dargelegt, welche die Grundregeln obiger Prozesse beschreiben. Sie werden mit Versuchsdaten verglichen, 
die von Necmi und Rose [23] bei intensiver Kondensation von Quecksilber gewonnen wurden. Aufgrund 
der erlangten Ergebnisse werden einfache Interpolationsformeln vorgeschlagen. Die Resultate der Analyse 
stimmen gut mit den bekannten numerischen Ldsungen fur Vorgange intensiver Verdampfung und 
Kondensation iiberein. Im Bereich von Vorgringen geringer Intensitiit gehen die vorgeschlagenen 

Formeln fiber in die bekannten Bezie hungen nach der linearen Theorie. 
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AHAJiZ13 ~HTEHC~BHOrO ~C~APEH~ M KOH~EHCA4~~ 

AHHO~PUIUI- B pa6oTe ItsyraIorcn 3aKotIoMepwcTH HHTemiBmIx npoueccoe mnapems H KoweH- 
caum c imonb30BaHHeM annapara MoneKympHo-KmieTtmcKoB TeopHH. PaccMaTpmamTcn onHo- 
MepwbIe CTaIUioHapIibIe 3aAawi. c n0~0ulbIo pa3pa60TaHHOrO IIpH6JIHXCeHHOrO MeTona noJIyYeH0 
3aMKlIyTOe OIlHCaHHe llpOUWCOB HIiTeHCHBHOrO HCIU~HHK H ICOHneHCaIWH. i-@&WTaBJIeHbI paCdTHbIe 
DHHbIe, XaF”KT‘ZpH3ytoIIlHe 3tUCOHOMepHOCTH H3j“GleMbIX iI~IW2COB. ~~Be~eHO C&WiHeHHe PeSyJIb- 

litTOE pWi8Ta C 3KC~ep~MeHT~bH~~ EWHblMii c: He3MH H &iC. POy3a [23] IlO ~TeHC~BHO~ 

KOH~eWCaUHH pTyTH. Ha OCHOBe pe3ynbTaTOB HCCReAOBaHHR fQ%ZLlIO~eHbI %IpOCTbIe ~Tep~O~K~HOH- 

HbIe @OpMynbI. Pe3ynbTaTbl aHanH3a XOpOUIO COI’JlaCylOTCSI C H3BeCTHblMH YHCJXHHMMH p'SIIeHHSlME 
3anaw HHTeHCKBHOrO HCllapWWl H KOHLIeHCPllWH. B o6nac-w MilJlOHHTeHCBBHbIX IlpOlleCCOB IlpeJlJIO- 

xceIiHbIe~ophiymdnepexonrT B cooTHomeHm nmeihioil TeopiiH,nonyqeHwbIe pasee. 


